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Outline

1. Review of “hourglass” (HG) control & the need for 
improvements

2. Theoretical framework of the “physical stabilization” (PS) 
hourglass control scheme [1]

3. Extend PS method to accommodate plastic deformations

4. Example demonstration of the method

[1] M. A. Puso. A highly efficient enhanced assumed strain physically stabilized hexahedral element. International Journal for Numerical Methods in 
Engineering, 49(8):1029-1064, 2000.
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What is hourglass (HG) control, and why do we 
need it?

§ Reduced (1-point) integration schemes for low-order elements only 
sample the constant strain modes of deformation in an element

§ Lack of stabilization results in unphysical hourglass deformations

§ Hourglass control = (artificial) stabilization to resist hourglass modes

Deformation modes with a uniform strain distribution
(representable using 1-point integration)

Deformation modes with a non-uniform strain distribution
(modes with zero internal energy using 1-point integration)
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Hourglass control for non-linear materials relies 
on heuristic choice of stabilization modulus

§ Large deformation plasticity: to avoid “locking”, reduced (tangent) shear 
modulus is used to inform the stabilization stiffness [2]

§ But reducing the stabilization stiffness too much can lead to hourglassing

§ Viscous stabilization typically needed to supplement stiffness stabilization
[2] S. Reese. On a consistent hourglass stabilization technique to treat large inelastic deformations and thermo-mechanical coupling in plane strain 
problems. International journal for numerical methods in engineering, 57(8):1095-1127, 2003.
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Existing approaches to develop an “elasto-plastic” 
form of hourglass control are either:

1. Not energetically consistent (may generate energy) [3]

2. Limited to specialized constitutive formulations [4,5]

Desired improvements for “elasto-plastic” hourglass control:

§ Formulate within a thermodynamically consistent framework

§ Decouple hourglass state from the constitutive state

§ Minimize need for problem-specific adjustments

[3] L. Stainier and J.Ph. Ponthot. An improved one-point integration method for large strain elastoplastic analysis. Computer Methods in Applied 
Mechanics and Engineering, 118(1):163-177, 1994.
[4] P.H. Jetteur and S. Cescotto. A mixed finite element for the analysis of large inelastic strains. International Journal for Numerical Methods in 
Engineering, 31(2):229-239, 1991.
[5] X. Li, S. Cescotto, and P.G. Duxbury. A mixed strain element method for pressure-dependent elastoplasticity at moderate finite strain. 
International journal for numerical methods in engineering, 43(1):111-129, 1998.
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Physical stabilization: decompose deformation 
gradient into average and hourglass parts

§ Total deformation: 𝑭 = '𝑭(𝑭

§ Hourglass deformation: (𝑭

§ Average deformation: '𝑭

§ Total energy: 𝜓 = *𝜓 + #𝜓

§ Hourglass energy: *𝜓((𝑭)

§ Affine energy: #𝜓('𝑭)

𝒇 = #𝑲#𝒖 + '𝑲(𝒖
Stabilization stiffness

Modal hourglass displacements
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Co-rotational kinematics facilitates linearization 
& exact integration of stabilization stiffness

§ Linearized co-rotational hourglass strains: !𝜺 = $𝑩&𝒖

§ Linearized hourglass strain-displacement operator: $𝑩

§ (Elastic) material stiffness: $𝑫

'𝑲 = ) '𝑩!'𝑫'𝑩𝑑𝑉
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Postulate additive decomposition of hourglass 
displacements into elastic and plastic parts:

(𝒖 = (𝒖" + (𝒖#

.𝜺 = .𝜺" + .𝜺#

.𝜺" = '𝑩(𝒖" .𝜺# = '𝑩(𝒖#

§ Hourglass forces/stresses depend upon elastic
hourglass displacements/strains:

0𝒇 = '𝑲(𝒖" (𝝈 = '𝑫.𝜺"
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Define a non-local yield condition based on an 
integral measure of effective hourglass stress

2𝜎 ≡
∫ (𝝈 ∶ '𝕄 ∶ (𝝈 𝑑𝑉

∫𝑑𝑉
= (𝒖" '𝑴(𝒖"

𝑓$ = 2𝜎 − 𝜎$ ≤ 0

§ Hourglass yield condition 𝑓! ≤ 0 depends exclusively upon 
the hourglass deformations

§ Hourglass plastic metric &𝑴 can be integrated exactly

𝜎$ = 𝜎% + 𝑘# ̅𝜀#
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Flow rule for plastic hourglass displacements 
formulated to satisfy dissipation inequality

𝒟# = ) 2𝜎 ̇̅𝜀#𝑑𝑉 = 0𝒇 B (̇𝒖# ≥ 0

(̇𝒖# = (𝒏 ̇̅𝜀#
§ “Radial” flow direction with &𝒏 and &𝒖! co-linear 

guarantees 𝒟" ≥ 0

(𝒏 =
∫ 2𝜎𝑑𝑉
(𝒖" '𝑲(𝒖"

(𝒖"
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Elasto-plastic predictor-corrector algorithm used 
to update the plastic hourglass displacements

1. !𝒖!,#$ = !𝒖 − !𝒖%,#$

2. %𝜎#$ = !𝒖!,#$ '𝑴!𝒖!,#$

3. !𝒖!,#$ = &𝒖!,#$(𝑲&𝒖!,#$

∫ +,#$ -.

4. ∆ ̅𝜀% = /%#$

0&1 ⁄+,#$ &𝒖!,#$

5. ̅𝜀% ← ̅𝜀%,#$ + ∆ ̅𝜀%

6. !𝒖% ← !𝒖%,#$ + &𝒖!,#$

&𝒖!,#$
∆ ̅𝜀%

7. .𝒇 = '𝑲 !𝒖 − !𝒖%

§ Elastic predictor step:
— #̇𝒖 ≠ 0, #̇𝒖! = 0

§ Plastic corrector step:
— #̇𝒖 = 0, #̇𝒖! ≠ 0, radial return #𝒏

§ Negligible added computational 
cost to original hourglass force 
computations

§ Requires storage of (12) plastic 
hourglass displacements, and 
equivalent plastic strain
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Demonstrations and comparison between 
elasto-plastic vs. elastic/tangent HG control

̅𝜀
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Tangent
HG Control
(too soft)
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Elasto-Plastic
HG Control
(just right)

̅𝜀
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Elastic HG 
Control

(too stiff)
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Single element example problem: cyclic bending 
with kinematic hardening behavior

Elasto-Plastic HG Control

Tangent HG Control

(Bending) HG displacement
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§ Recovers tangent HG 
control as the initial 
yield stress is reduced 
to zero
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Elasto-plastic HG control avoids both locking 
(too stiff) and hourglassing (too soft) behaviors

̅𝜀
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𝜇"

Tangent
HG Control
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Elasto-Plastic
HG Control
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Compressed aluminum billet: deformations and 
net force compare well with tangent HG control

Elasto-Plastic HG Control

Tangent HG Control

Elastic HG Control
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§ Plotted hourglass plastic 
strains demonstrate 
localization in highly 
distorted elements
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Concentrated loading excites low-energy 
hourglass modes, even under mesh refinement

Tangent
HG Control

Elasto-Plastic
HG Control

§ Coarsely meshed 
beam bending 
problem from [6]

§ Resulting behavior is 
purely elastic 
(no yielding)

[6] Y. Ko and K.-J. Bathe. A new 8-node element 
for analysis of three-dimensional solids. 
Computers & Structures, 202:85-104, 2018. 
ISSN 0045-7949.

§ Good coarse-mesh 
bending accuracy 
using EAS modes in 
the HG control [1]
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Concentrated loading from contact forces in 
high-velocity impact exaggerates hourglassing

Tangent
HG Control

Elasto-Plastic
HG Control

Initial
velocity

Rigid, frictionless surface

§ Thin geometries are 
commonly meshed 
anisotropically

§ Contact force at 
bottom corner node 
excites hourglassing

§ Plot of localized hourglass 
plastic strains

§ No locking or hourglassing
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Conclusions & future work

§ Proposed methodology provides several improvements:
— Avoids locking (too stiff) and hourglassing (too soft) behaviors
— Plastic dissipation obviates need for viscous hourglass control
— Stabilization parameters informed directly by the plasticity model
• Avoids heuristic adjustments to the stabilization stiffness

§ Polyhedral element technologies (VEM) require stabilization in 
both explicit & implicit analyses
— Poor selection of the stabilizing parameters can lead to ill-conditioning
— Future work: apply proposed methodology to VEM

§ Composite/super-elements 
— Future work: extend approach for non-linear reduced order modeling
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