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1 Introduction

Hydraulic fracturing has become a technique of particular interest in recent years. The
basic process involves pumping a highly pressurized fracturing fluid into a wellbore with
the intent of inducing and propagating cracks in the sub-surface rock mass. With the aid
of a proppant (a solid inclusion within the fracturing fluid used to keep open an induced
fracture) the cracks are made large enough to allow for the passage of gas, oil, water, or
additional fracturing fluids. Many natural gas and oil deposits that would otherwise be
inaccessible can be made available for extraction through the use of hydrofracturing. Its
applications extend not only to well-stimulation of natural gas and petroleum reserves,
but also to geothermal energy production.

But despite having been in use for over half a century, there has been limited research
and application of techniques for adequately modeling, predicting, and understanding
the hydraulic fracturing process in inhomogeneous rock masses with complex fracture
networks. Such advances could be of great use for the purpose of developing techniques
for increasing well production. In addition, such analyses may facilitate the further in-
vestigation of the harmful side-effects presumably caused by hydraulic included fracture.

Lawrence Livermore National Laboratory has taken steps in this effort to investigate
a number of modeling techniques for the simulation of complex hydraulic fracturing
problems. A finite element code developed specifically for this purpose, by the name of
‘GEOS,’ has served as their main research platform. Our own efforts in developing a
modeling technique have therefore been conducted in collaboration with LLNL through
the medium of GEOS.

On the subject of modeling crack nucleation and propagation, we may consider two
possible avenues of representing cracks in a finite element context. The first, and perhaps
the most natural approach, would be to consider cracks as discrete physical entities.
XFEM may be considered as such a method, whereby individual cracks are modeled as
lines or planes which intersect the original (un-cracked) geometry. The advantage of such
an approach would be that any number of cracks may form, which can take on virtually
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arbitrary shape or orientation. However, the difficulty of accounting for such variability
introduces significant complexity in attempting to model the problem. Additionally, one
would then need to devise a means of developing a ‘flow mesh’ that models the transport
of fluids through the fracture network, which would be no trivial task for an arbitrarily
shaped system of cracks.

A somewhat simplified approach that still maintains the same notion of discretely
representing cracks would be to only allow a given meshed geometry to develop cracks
along element interfaces. Indeed, such an implementation of this kind has already found
an implementation within GEOS, as described in reference [11]. This kind of ‘mesh
splitting’ technique would lend itself well to having a discrete ‘flow mesh’ be defined by
the faces or edges between two cracked elements. The disadvantage of such an approach
would be that one would encounter the problem of mesh dependency. The solution
would depend entirely upon how the original geometry was discretized, and would likely
change under mesh refinement. One would also need to be continuously reconstructing
the connectivity of the mesh. Additionally, it would be necessary to incorporate an
appropriate contact model to prevent inter-penetration between split faces in the new
mesh. For these reasons, a more simplified approach might prove to be a desirable
alternative for modeling hydraulic fracture.

As an alternative to representing cracks in a discrete sense, we may instead consider
a so-called ‘smeared’ approach, whereby cracks are represented in a homogenized sense.
The entire cracked body may therefore be thought of as a continuum comprised of
both a solid and a liquid phase, with the permeability of the solid skeleton governing
the flow of fluid through the assumed porous medium. Such an approach has already
been well established in the realm of poromechanics, which we will draw upon in the
development of our ‘smeared’ approach. The advantage of such an approach arises from
the fact that we no longer need to consider a discrete representation of the fracture
network. In this way, we can avoid the need to re-mesh, while also reducing the mesh
dependency of the problem. As we will see later on, the equations governing the flow
of fluid through the solid skeleton are strongly coupled to the equilibrium equations
governing the deformation of the solid body. All that remains to be done is to develop a
method of evolving the material properties of the continuum to emulate the propagation
of cracks in the porous body.

In what follows, we will first develop and present the governing equations of porome-
chanics in strong form. We will then develop a finite element representation of the
poromechanics problem, and illustrate the final linear system of equations that will need
to be solved. Once we have this, we will address a simplistic approach for modeling
damage in the continuum, which will serve as a basis for further development of damage
models in future work. We will then discuss some of the implementational nuances of
poromechanics, in particular with regard to developing a stable discretization of the gov-
erning equations. Finally, we will present a small set of test problems that demonstrate
the efficacy of the method.

2



2 Development of the Equations of Poroelasticity

Poromechanics is a subset of continuum mechanics which considers the deformation of
a porous medium that is permeated by a compressible fluid. The governing equations
of poromechanics arise from equilibrium of the solid matrix, and the diffusive fluid flow
through the interconnected pore space. As we proceed in summarizing the equations
of poroelasticity, we will follow closely the development of poromechanics presented in
reference [4].

To treat our porous medium as a continuum, we will consider a particular repre-
sentative volume element (RVE), appropriately chosen to contain both fluid and solid
phases, as depicted in figure 1.

Figure 1: Representative Volume Element

We define the Lagrangian porosity φ to be the ratio of the total porous (fluid) vol-
ume in the current configuration, to the total RVE volume in the reference configuration.
This definition is suitable for finite deformation kinematics. While the initial Lagrangian
porosity φ0 (the ratio of reference configuration porous volume to reference configuration
total RVE volume) will remain constant for all time, φ may vary with time. If, how-
ever, we make the assumption of small deformations, then we may assert the following
simplification: φ(t) = φ0∀t.

We invoke the notion of a solid ‘skeleton’ being comprised of only the solid phase
within the RVE, absent of the saturating fluid. The deformation of the solid ‘skeleton’
will be described by the displacement field u(x), which will be defined for all spatial
coordinates x contained within the domain of the continuum body B being considered.
The fluid phase is assumed to move independently of the solid skeleton, with its motion
being governed by the equation of fluid continuity.

For the sake of simplicity, we will assume that the skeleton undergoes only small de-
formations. Therefore, the linearized strain tensor εij will be defined as the macroscopic
strain of the skeleton, such that

εij =
1

2
(ui,j + uj,i) (1)
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If we consider only the solid phase within the RVE, we may propose an ‘effective’ skeleton
stress σ′ij as

σ′ij = Cijklεkl (2)

where Cijkl is the skeleton stiffness tensor. The effective stress may be thought of as a
macroscopic quantity. In general, however, the effective skeleton stress does not fully
describe the true (microscopic) stress in the solid constituent, which will depend on the
pore structure of the material. In essence, the effective stress may be thought of as a
volume averaging over the RVE of the true stress in the solid.

If we now consider only the fluid phase within the RVE, we may state the intrinsic
pressure in the fluid as p(x) ∀x ∈ B.

We may consider the total stress in the RVE σij to be the sum of partial stress
contributions from both the solid and fluid phases, such that

σij = σsij + σfij (3)

where σsij and σfij are the stresses within the solid matrix and the fluid which have been
averaged over the RVE. The fluid stress tensor takes the form

σfij = −bijp (4)

where bij is a symmetric rank 2 tensor (generally referred to as Biot’s modulus in the
poromechanics literature) whose action is to link increments of intrinsic fluid pressure
to the total stress in the RVE. In the special case of an isotropic medium, bij reduces to
a spherical tensor, where b11 = b22 = b33, and bij = 0 for i 6= j. If we additionally claim
that the partial stress contribution from the solid σsij is the effective stress σ′ij , then the
total stress in the RVE may be expressed as

σij = Cijklεkl − bijp (5)

The typical equilibrium equation for the RVE may be written as

σij,j + ρgi = 0 ∀x ∈ B (6)

where gi is the body force acting on the RVE, and ρ is the overall mass density per unit
of initial RVE volume, defined as

ρ = (1− φ0)ρs0 + φρf (7)

It should be noted that the contribution to the overall mass density from the solid
((1 − φ0)ρs0) is constant for all time, where ρs0 is the intrinsic mass density of the solid
in the reference configuration. However, the contribution from the fluid (φρf ) is allowed
to vary in time due to both the change in pore volume φ, and the change in the fluid’s
intrinsic mass density ρf . In our treatment of poromechanics, we will consider only quasi-
static equilibrium, acting under the assumption that the dynamics of the problems that
we seek to model are negligible.
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Along a similar train of thought, we assume that the inertia of the fluid will not
significantly contribute to the fluid motion, with the flow being predominantly pressure-
driven. We will therefore model the averaged velocity of the fluid Vi using Darcy’s
law

Vi = −κij
µ

(p,j − ρfgj) (8)

where µ is the fluid viscosity, κij is the intrinsic permeability of the porous medium,
and ρf is the fluid density (which may be expressed as a function of p.) The hydraulic
conductivity of the medium is defined as kij = κij/µ. We notice that the flux rate is
governed by a combined fluid potential that accounts for both pressure potential from
∇p, and body force (or gravitational) potential from ρfgj . If one were to consider a
pressure field set consistent with a hydrostatic pressure field resulting from a constant
body force gi, then the resulting combined fluid potential would sum to zero, and thus
the flux Vi would be zero as well (i.e. hydrostatic conditions.) This rationale helps to
confirm our intuition of how the fluid should behave in the presence of a body force.

To ensure conservation of fluid mass, we may consider our RVE as a control volume.
The fractional volume of fluid contained within this control volume is simply the pore
volume φ. Based on the equation of fluid continuity, we may relate the total time rate
of change of the fluid volume φ contained within the RVE to the divergence of the flux
rate Vi

∂

∂t
φ+ Vi,i = 0 ∀x ∈ B (9)

That is to say, the change in fluid volume within the RVE must be balanced by the net
volumetric fluid flux into or out of the control volume. However, the above differential
equation more strictly enforces this condition to hold point-wise throughout the body,
and not just for a specific control volume.

We would like to express the total pore volume φ in terms of u and p, as these will
turn out to be our primary variables. We may use the following relation

φ = φ0 + bijεij +
p

M
(10)

where all variables have been defined previously except for 1
M , which effectively acts as a

fluid capacity parameter. It is analogous to the ‘volumetric specific storage’ in ground-
water flow terminology. Intuitively, 1

M links increments of fluid pressure to changes in
the total pore volume. We also observe that the skeleton dilation influences the pore
volume through Biot’s modulus.

As stated previously, we will select u(x) as one of our primary variables. The corre-
sponding boundary and initial conditions on the body B are expressed as follows

ui = ūi on ∂uB (11)

σijnj = t̄i on ∂tB (12)

ui(t = 0) = u0
i (13)
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We define ∂uB and ∂tB as the parts of the boundary on which prescribed skeleton
displacements (ūi) and prescribed tractions (t̄i) are specified, respectively. nj is an
outward unit surface normal, and u0

i is the initial skeleton displacement field (at t = 0.)
We also select p(x) as our other primary variable. The corresponding boundary and

initial conditions are
p = p̄ on ∂pB (14)

Vini = V̄ on ∂VB (15)

p(t = 0) = p0 (16)

We define ∂pB and ∂VB as the parts of the boundary on which prescribed fluid pressures
(p̄) and prescribed normal fluid flux rates (V̄) are specified, respectively. As before, ni
is an outward unit surface normal, and p0 is the initial fluid pressure field (at t = 0.)

It may be noted that

∂uB ∪ ∂tB = ∂B ∂uB ∩ ∂tB = ∅ (17)

and
∂pB ∪ ∂VB = ∂B ∂pB ∩ ∂VB = ∅ (18)

where ∂B is the complete boundary of the body B. However, it is in general not the case
that ∂uB = ∂pB, nor that ∂tB = ∂VB. That is to say, the partition of the boundary upon
which skeleton displacements and total traction vectors are prescribed is an altogether
distinct and separate partition of the boundary from the one upon which fluid pressures
and normal fluid fluxes are prescribed. For example, it is entirely possible for ∂uB to
overlap with both ∂pB and ∂VB.

In practice, the initial conditions would likely be set by selecting a p0 consistent with
a hydrostatic pressure distribution, i.e. p0

,j = ρfgj . The resulting u0
i could then be solved

for given this pressure field.
To recapitulate, we now present the equations of poroelasticity in strong form.

Governing Equations: Strong Form

Equation of Equilibrium of the Poroelastic Solid:

σij,j + ρgi = 0 ∀x ∈ B (19)

Boundary Conditions for the Poroelastic Solid:

ui = ūi on ∂uB (20)

σijnj = t̄i on ∂tB (21)

Initial Conditions for the Poroelastic Solid:

ui(t = 0) = u0
i (22)

Equation of Compressible Fluid Flow in a Porous Medium:
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∂

∂t
φ+ Vi,i = 0 ∀x ∈ B (23)

Boundary Conditions for the Compressible Fluid:

p = p̄ on ∂pB (24)

Vini = V̄ on ∂VB (25)

Initial Conditions for the Compressible Fluid:

p(t = 0) = p0 (26)

Constitutive Relations for the Poroelastic Solid:

σij = Cijklεkl − bijp (27)

εij =
1

2
(ui,j + uj,i) (28)

Constitutive Relations for the Compressible Fluid:

φ = φ0 + bijεij +
p

M
(29)

Vi = −kij(p,j − ρfgj) (30)

In what follows, we will present the statement of the equivalent weak form problem
statement, along with a derivation of the discrete-in-time equations of poroelasticity.
Finally, we will use a Galerkin approximation of these equations to obtain the complete
system of finite element equations, presented in matrix form.

Generalized Weak Form Problem Statement

Define:
ui ∈ S = {ui|ui ∈ H1(B), ui = ūi on ∂uB} (31)

vi ∈ V = {vi|vi ∈ H1(B), vi = 0 on ∂uB} (32)

and
pi ∈ T = {p|p ∈ H1(B), p = p̄ on ∂pB} (33)

qi ∈ Q = {q|q ∈ H1(B), q = 0 on ∂pB} (34)

Find ui ∈ S and p ∈ T such that:∫
B
σijvi,jdv =

∫
∂tB

t̄ivida+

∫
B
ρgividv ∀vi ∈ V (35)

and ∫
B
Viq,idv =

∫
∂VB
V̄qda+

∫
B

∂φ

∂t
qdv ∀q ∈ Q (36)

7



Derivation of the Discrete-in-Time Equations

Substitute the constitutive relations for the fluid and the solid into each integral state-
ment∫

B

[
Cijkl{

1

2
(uk,l + ul,k)} − bijp

]
vi,jdv =

∫
∂tB

t̄ivida+

∫
B
ρgividv ∀vi ∈ V (37)

∫
B

[
−kij(p,j − ρfgj)

]
q,idv =

∫
∂VB
V̄qda+

∫
B

∂

∂t
(φ0 + bijεij +

p

M
)qdv ∀q ∈ Q (38)

simplifying,∫
B
vi,jCijkluk,ldv −

∫
B
vi,jbijpdv =

∫
∂tB

vit̄ida+

∫
B
viρgidv ∀vi ∈ V (39)

−
∫
B
q,ikijp,jdv −

∫
B
q
∂

∂t
(bijui,j +

p

M
)dv =

∫
∂VB

qV̄da−
∫
B
q,ikijρ

fgjdv ∀q ∈ Q (40)

Integrate each of the above equations with respect to time from tm to tm+1∫ tm+1

tm

[∫
B
vi,jCijkluk,ldv −

∫
B
vi,jbijpdv

]
dt...

... =

∫ tm+1

tm

[∫
∂tB

vit̄ida+

∫
B
viρgidv

]
dt ∀vi ∈ V (41)

∫ tm+1

tm

[
−
∫
B
q,ikijp,jdv −

∫
B
q
∂

∂t
(bijui,j +

p

M
)dv

]
dt...

... =

∫ tm+1

tm

[∫
∂VB

qV̄da−
∫
B
q,ikijρ

fgjdv

]
dt ∀q ∈ Q (42)

and define
∆t = tm+1 − tm (43)

We propose an approximate integration scheme (generalized trapezoidal rule) as follows
for a general function of time, f(t)∫ tm+1

tm
f(t)dt ≈

[
1

2
(1 + θ)f (m+1) +

1

2
(1− θ)f (m)

]
∆t = f (m,θ)∆t (44)

where θ = +1 corresponds to the Backward Euler method, θ = −1 corresponds to the
Forward Euler method, and θ = 0 corresponds to the Crank-Nicolson method. Applying
this rule to our integral statements from before, we obtain the discrete-in-time weak
form equations ∫

B
vi,jC

(m,θ)
ijkl u

(m,θ)
k,l dv −

∫
B
vi,jb

(m,θ)
ij p(m,θ)dv...

... =

∫
∂tB

vit̄
(m,θ)
i da+

∫
B
viρ

(m,θ)gidv ∀vi ∈ V (45)
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−∆t

∫
B
q,ik

(m,θ)
ij p

(m,θ)
,j dv −

∫
B
qb

(m+1)
ij u

(m+1)
i,j dv −

∫
B
q
p(m+1)

M (m+1)
dv...

... = ∆t

[∫
∂VB

qV̄(m,θ)da−
∫
B
q,ik

(m,θ)
ij ρf(m,θ)gjdv

]
...

...−
∫
B
qb

(m)
ij u

(m)
i,j dv −

∫
B
q
p(m)

M (m)
dv ∀q ∈ Q (46)

Galerkin Approximation

In what follows, we will adopt a similar notational scheme as in reference [5]. We now
wish to find an approximate solution, uhi ∈ Sh ⊂ S and ph ∈ T h ⊂ T such that

uh =
∑
a∈η0

Φaua +
∑
a∈ηu

Φaūa, ph =
∑
a∈ζ0

Φ̂apa +
∑
a∈ζp

Φ̂ap̄a (47)

vh =
∑
a∈η0

Φava, qh =
∑
a∈ζ0

Φ̂aqa (48)

with the following definitions for the sets of nodes, a. Note that the sets η0 and ηu are
defined independently from ζ0 and ζp.

η0 The set of nodes without prescribed skeleton displacements

ηu The set of nodes with prescribed skeleton displacements, ū

ζ0 The set of nodes without prescribed fluid pressure

ζp The set of nodes with prescribed fluid pressure, p̄

Henceforth, we shall adopt matrix and vector representations for all quantities, with the
stress and strain vectors arranged according to Voigt notation. It therefore becomes of
interest to investigate the following quantities

ε =
∑
a

Baua, ∇ · p =
∑
a

B̂apa (49)

where we define Ba and B̂a (in three spatial dimensions) as follows

Ba =



Φa,1 0 0
0 Φa,2 0
0 0 Φa,3

0 Φa,3 Φa,2

Φa,3 0 Φa,1

Φa,2 Φa,1 0


B̂a =

 Φ̂a,1

Φ̂a,2

Φ̂a,3

 (50)

We shall also recast the ‘skeleton’ modulus tensor, Cijkl, as the canonical modulus ma-
trix, D. Further, we will rearrange the Biot modulus, bij , into the form of a column
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vector, b, as shown below (in three spatial dimensions)

b =



b11

b22

b33

b23

b13

b12


(51)

with these definitions, we may now express the Galerkin approximation to the weak form
as follows∑

b∈η0

(∫
B
BT
aD

(m,θ)Bbdv

)
u

(m,θ)
b +

∑
b∈ηu

(∫
B
BT
aD

(m,θ)Bbdv

)
ū

(m,θ)
b ...

...−
∑
b∈ζ0

(∫
B
BT
a b

(m,θ)Φ̂bdv

)
p

(m,θ)
b −

∑
b∈ζp

(∫
B
BT
a b

(m,θ)Φ̂bdv

)
p̄

(m,θ)
b ...

... =

∫
∂tB

Φat̄
(m,θ)da+

∫
B

Φaρ
(m,θ)gdv ∀a ∈ η0 (52)

∆t

−∑
b∈ζ0

(∫
B
B̂T
a k

(m,θ)B̂bdv

)
p

(m,θ)
b −

∑
b∈ζp

(∫
B
B̂T
a k

(m,θ)B̂bdv

)
p̄

(m,θ)
b

 ...
...−

∑
b∈η0

(∫
B

Φ̂ab
T (m+1)Bbdv

)
u

(m+1)
b −

∑
b∈ηu

(∫
B

Φ̂ab
T (m+1)Bbdv

)
ū

(m+1)
b ...

...−
∑
b∈ζ0

(∫
B

Φ̂aM
−1(m+1)Φ̂bdv

)
p

(m+1)
b −

∑
b∈ζp

(∫
B

Φ̂aM
−1(m+1)Φ̂bdv

)
p̄

(m+1)
b ...

... = ∆t

[∫
∂VB

Φ̂aV̄(m,θ)da−
∫
B
B̂T
a k

(m,θ)ρf(m,θ)gdv

]
...

...−
∑
b∈η0

(∫
B

Φ̂ab
T (m)Bbdv

)
u

(m)
b −

∑
b∈ηu

(∫
B

Φ̂ab
T (m)Bbdv

)
ū

(m)
b ...

...−
∑
b∈ζ0

(∫
B

Φ̂aM
−1(m)Φ̂bdv

)
p

(m)
b −

∑
b∈ζp

(∫
B

Φ̂aM
−1(m)Φ̂bdv

)
p̄

(m)
b ∀a ∈ ζ0 (53)

We can simplify these expressions by introducing the following notation for the integral
statements

Kuu
(m)
ab =

∫
B
BT
aD

(m)Bbdv (3× 3) (54)

Kup
(m)
ab =

∫
B
BT
a b

(m)Φ̂bdv (3× 1) (55)

Kpu
(m)
ab =

∫
B

Φ̂ab
T (m)Bbdv (1× 3) (56)
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Kpp
(m)
ab =

∫
B
B̂T
a k

(m)B̂bdv (1× 1) (57)

Mpp
(m)
ab =

∫
B

Φ̂aM
−1(m)Φ̂bdv (1× 1) (58)

this yields ∑
b∈η0

Kuu
(m,θ)
ab u

(m,θ)
b −

∑
b∈ζ0

Kup
(m,θ)
ab p

(m,θ)
b ...

... =

∫
∂tB

Φat̄
(m,θ)da+

∫
B

Φaρ
(m,θ)gdv...

...−
∑
b∈ηu

Kuu
(m,θ)
ab ū

(m,θ)
b +

∑
b∈ζp

Kup
(m,θ)
ab p̄

(m,θ)
b ∀a ∈ η0 (59)

−
∑
b∈η0

Kpu
(m+1)
ab u

(m+1)
b −∆t

∑
b∈ζ0

Kpp
(m,θ)
ab p

(m,θ)
b −

∑
b∈ζ0

Mpp
(m+1)
ab p

(m+1)
b ...

... = ∆t

[∫
∂VB

Φ̂aV̄(m,θ)da−
∫
B
B̂T
a k

(m,θ)ρf(m,θ)gdv

]
...

...+
∑
b∈ηu

Kpu
(m+1)
ab ū

(m+1)
b + ∆t

∑
b∈ζp

Kpp
(m,θ)
ab p̄

(m,θ)
b +

∑
b∈ζp

Mpp
(m+1)
ab p̄

(m+1)
b ...

−
∑
b∈η0

Kpu
(m)
ab u

(m)
b −

∑
b∈ηu

Kpu
(m)
ab ū

(m)
b −

∑
b∈ζ0

Mpp
(m)
ab p

(m)
b −

∑
b∈ζp

Mpp
(m)
ab p̄

(m)
b ∀a ∈ ζ0(60)

define contributions to the global forcing/residual vector as

Fu
(m)
a =

∫
∂tB

Φat̄
(m)da+

∫
B

Φaρ
(m)gdv−

∑
b∈ηu

Kuu
(m)
ab ū

(m)
b +

∑
b∈ζp

Kup
(m)
ab p̄

(m)
b (3× 1)

(61)

F 1
p

(m)

a
=

∫
∂VB

Φ̂aV̄(m)da−
∫
B
B̂T
a k

(m)ρf(m)gdv +
∑
b∈ζp

Kpp
(m)
ab p̄

(m)
b (1× 1) (62)

F 2
p

(m)

a
=
∑
b∈ηu

Kpu
(m)
ab ū

(m)
b +

∑
b∈ζp

Mpp
(m)
ab p̄

(m)
b (1× 1) (63)

substituting for the above expressions∑
b∈η0

Kuu
(m,θ)
ab u

(m,θ)
b −

∑
b∈ζ0

Kup
(m,θ)
ab p

(m,θ)
b = Fu

(m,θ)
a ∀a ∈ η0 (64)

−
∑
b∈η0

Kpu
(m+1)
ab u

(m+1)
b −∆t

∑
b∈ζ0

Kpp
(m,θ)
ab p

(m,θ)
b −

∑
b∈ζ0

Mpp
(m+1)
ab p

(m+1)
b ...

... = ∆tF 1
p

(m,θ)

a
+ F 2

p
(m+1)

a
− F 2

p
(m)

a
−
∑
b∈η0

Kpu
(m)
ab u

(m)
b −

∑
b∈ζ0

Mpp
(m)
ab p

(m)
b ∀a ∈ ζ0 (65)
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and expanding the (m, θ) terms, we obtain

(1 + θ)

∑
b∈η0

Kuu
(m+1)
ab u

(m+1)
b −

∑
b∈ζ0

Kup
(m+1)
ab p

(m+1)
b

 ...
... = (1 + θ)Fu

(m+1)
a + (1− θ)

Fu
(m)
a −

∑
b∈η0

Kuu
(m)
ab u

(m)
b +

∑
b∈ζ0

Kup
(m)
ab p

(m)
b

 ∀a ∈ η0(66)

−
∑
b∈η0

Kpu
(m+1)
ab u

(m+1)
b −

∑
b∈ζ0

(
(1 + θ)

∆t

2
Kpp

(m+1)
ab +Mpp

(m+1)
ab

)
p

(m+1)
b ...

... = (1 + θ)
∆t

2
F 1
p

(m+1)

a
+ F 2

p
(m+1)

a
+ (1− θ)∆t

2
F 1
p

(m)

a
− F 2

p
(m)

a
...

...−
∑
b∈η0

Kpu
(m)
ab u

(m)
b −

∑
b∈ζ0

(
(θ − 1)

∆t

2
Kpp

(m)
ab +Mpp

(m)
ab

)
p

(m)
b ∀a ∈ ζ0 (67)

For θ = 0 (Crank-Nicolson method) we find∑
b∈η0

Kuu
(m+1)
ab u

(m+1)
b −

∑
b∈ζ0

Kup
(m+1)
ab p

(m+1)
b ...

... = Fu
(m+1)
a + Fu

(m)
a −

∑
b∈η0

Kuu
(m)
ab u

(m)
b +

∑
b∈ζ0

Kup
(m)
ab p

(m)
b ∀a ∈ η0 (68)

−
∑
b∈η0

Kpu
(m+1)
ab u

(m+1)
b −

∑
b∈ζ0

(
∆t

2
Kpp

(m+1)
ab +Mpp

(m+1)
ab

)
p

(m+1)
b ...

... =
∆t

2
F 1
p

(m+1)

a
+ F 2

p
(m+1)

a
+

∆t

2
F 1
p

(m)

a
− F 2

p
(m)

a
...

...−
∑
b∈η0

Kpu
(m)
ab u

(m)
b +

∑
b∈ζ0

(
∆t

2
Kpp

(m)
ab −Mpp

(m)
ab

)
p

(m)
b ∀a ∈ ζ0 (69)

The above equations may be cast in matrix form as: Kuu −Kup

−Kpu −
(

∆t
2 Kpp + Mpp

) (m+1) [
u
p

](m+1)

. . .

. . . =

 −Kuu Kup

−Kpu

(
∆t
2 Kpp −Mpp

) (m) [
u
p

](m)

. . .

. . .+

 Fu(
∆t
2 F1

p + F2
p

) (m+1)

+

 Fu(
∆t
2 F1

p − F2
p

) (m)

(70)
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And in terms of the incremental skeleton displacements and fluid pressures, û and p̂ Kuu −Kup

−Kpu −
(

∆t
2 Kpp + Mpp

) (m+1) [
û
p̂

](m+1)

. . .

. . . =

 −
(
Kuu

(m) + Kuu
(m+1)

) (
Kup

(m) + Kup
(m+1)

)
−
(
Kpu

(m) −Kpu
(m+1)

) (
∆t
2 Kpp

(m) −Mpp
(m) + ∆t

2 Kpp
(m+1) + Mpp

(m+1)
)

[
u
p

](m)

. . .

. . .+

 Fu(
∆t
2 F1

p + F2
p

) (m+1)

+

 Fu(
∆t
2 F1

p − F2
p

) (m)

3 Development of a Damage Mechanics Model

The key concept of damage mechanics is to take what one might refer to as a ‘smeared’
representation of the fracture within a given material. Rather than represent discrete
cracks within a given medium that has undergone material failure, the effects of cracking
within the material are characterized through a homogenized approach, where the extent
of material failure is associated with one or more damage parameters. Such parameters
may be used to degrade the elastic properties of the material in such as way as to mimic
fracture initiation and propagation from a macroscopic viewpoint. The treatment of
materials as homogenized continua in damage mechanics is similar in nature to the way
that poromechanics describes porous materials at a macroscopic level. As such, the
usage of damage mechanics to simulate hydraulic fracture within porous media would
seem to be a natural first choice.

However, rather than simply degrading the elastic properties of the porous material,
we would also seek to evolve the permeability of the material in an effort to reflect the
allowance of fluid to flow through the newly formed cracks in the rock. Heuristically, one
might also expect the porosity of the rock to also be affected by the damage incurred
within the material. Reference [7] presents a formulation that evolves both the damage
and the porosity of the material in a coupled fashion. However, for our applications we
will only consider the case of small deformations, such that φ ≈ φ0.

In what follows, we will pursue the development of an ad hoc damage mechanics
scheme involving only a single damage parameter, based in part upon the concept of
a corresponding damage law presented in reference [3]. This parameter will be used to
evolve the material properties isotropically. More complicated models may consider the
incorporation of multiple damage parameters, with a particular interest in degrading the
material anisotropically, in an effort to capture the directionality of cracks. This would
be a topic for further research.

We propose a damage variable D such that D ∈ (0, 1]. For D = 1, we may consider
the material as being ‘undamaged.’ A D < 1 therefore indicates that the material has
incurred some amount of damage. We will prohibit D = 0 to avoid divide by zero risk,
but for the sake of argument, this would correspond to a ‘fully’ damaged material state.
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As stated previously, we would like the material properties of our poroelastic medium
to depend upon the extent of damage in some way. In particular, we will investigate a
scheme which allows for the evolution of the elastic properties of the solid skeleton, as
well as the intrinsic permeability of the medium. That is to say

λ = λ(D); µ = µ(D); κij = κij(D) (71)

For the time being, we will not make a selection as to exact nature of this dependency,
which will allow us to develop a sufficiently general single damage variable scheme.

Given the nature of the problem that we would like to model, it is necessary that we
select an appropriate failure criterion that is consistent with the behavior of the material.
Since the applications that we are interested in are focused around the brittle failure of
rock, we pursue a model that satisfies the following goals:

1 Failure of the material in uniaxial tension should occur at a lower stress than for
failure in uniaxial compression.

2 Failure of the material should be pressure-dependent. That is to say, failure of the
material should occur more easily at lower pressures than at higher pressures.

3 Failure of the material should be controlled predominantly by the deviatoric stress
state.

Certain key assumptions have been made in enumerating the above goals that deserve
clarification. Given that rock is a brittle material, our selection of goal number 1 is
unsurprising. However, we suppose that for fractured rock masses at sufficient depths
below ground, the overburden of soil will limit the likelihood of the material failing in
mode I fracture (see figure 2.) Given the high pressures at the depths being considered
for the problems that we would like to model, this is not an unreasonable assumption.
Even with the aid of a pressurizing fluid, it has been observed for hydraulic fracturing
procedures that the majority of rock failure is attributable to mode II and III fracture.
This figures prominently in our assertion of goal number 3. However, we should not
diminish the role that the fracturing fluid plays in assisting failure of the material,
which is apparent in our statement of goal number 2. It should be the case that the
higher fluid pressures will reduce the total rock pressure, allowing for fracture to occur.

Two possible failure criteria might satisfy the enumerated goals 1 through 3: The
Mohr-Coulomb failure criterion, and the Drucker-Prager failure criterion. A detailed
description of these criteria may be found in reference [1]. For our purposes, we will
select the Drucker-Prager criterion, if for no other reason than its ability to be succinctly
expressed as √

J2 = A+BI1 (72)

where J2 = 1
2sijsji is the second invariant of the deviatoric part of the stress (sij =

σij − 1
3σkkδij ,) I1 = σkk is the first invariant of the stress σij , and A and B may be

written as follows:

A =
2√
3

(
σcσt
σc + σt

)
; B =

1√
3

(
σt − σc
σc + σt

)
(73)
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Figure 2: Illustration of fracture modes

σc and σt are defined as the uniaxial failure stresses in compression and tension, respec-
tively. In general, σc and σt may differ. In principal stress space, the Drucker-Prager
criterion describes a conical surface. Stress states contained within this cone are pre-
sumed to be within the elastic range of the material. In our damage model, we will
choose to strictly enforce the consistency condition during failure through an appropri-
ate degradation of the material properties.

The distinction should be made at this point that while we are choosing to make use
of a failure surface (as is done in the case of plasticity), our approach is more simplistic,
in that we are choosing not to decompose the strain into elastic and plastic parts, but
rather, we consider the material to remain fully elastic. The basic approach is in many
ways similar to the damage model proposed in reference [3]. To enforce the consistency
condition, we must permanently degrade the elastic properties of the material. The
resulting damaged moduli (ED) will in general be less than the original elastic moduli
(E0.) An example of this sort of material behavior for uniaxial monotonic loading and
unloading is depicted in figure 3.

σ 

ε 

σfail 

E0 

ED 

Figure 3: Uniaxial damage model

For monotonic loading, the model would therefore mimic an elastic-perfectly plastic
material. The difference lies in the behavior of the material during unloading. While
it is unlikely that the material will behave in exactly this fashion, it is nonetheless a
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reasonably simple place to start.
We will begin by considering only the porous skeleton of our poroelasticity for-

mulation, in the absence of a saturating fluid. The ‘effective’ stress in the skeleton
σ′ij = Cijlkεkl will be taken as the stress quantity that we will utilize in assessing the
consistency condition. The ‘dry’ skeleton will have associated failure stresses in both
tension and compression (σ′c and σ′t) such that A and B are defined for a given material.
We can express the fracture surface as

f(σ′ij) = J2 − (A+BI1)2 = 0 (74)

For a given increment of strain, we would like to enforce f(σ′ij) ≤ 0 at the end of a given
time step. In a somewhat rudimentary way, we can consider the effective stress σ′ij as
being dependent upon the elastic properties of the material λ and µ, and each of these
in turn being dependent upon the amount of damage D incurred by the material. We
would therefore like to develop an appropriate evolution law for D that will satisfy the
consistency condition (df = 0 during failure.)

One method to enforce f(σij) = 0 at the end of a time step would be to adopt the
following numerical scheme, equivalent to Newton-Raphson iteration:

Di+1 = Di −
fi

∂f/∂D|i
(75)

where subscript i denotes an iteration index. It should be emphasized, however, that the
end-step value of D(m+1) should be enforced to be less than or equal to the beginning step
value of D(m). This requirement comes from the assertion that the extent of damage
cannot be reversed. Otherwise, the stress-strain response would be consistent with a
non-linear elastic material, which is not what we desire.

Clearly, the adoption of a Newton-Raphson iteration scheme requires that we develop
an estimate of the derivative of f with respect to the damage variable D. The derivation
of this quantity is as follows:

We desire an expression of J2 in terms of the effective stress. We write

J2 =
1

2
sijsji =

1

2

(
σ′ij −

1

3
σ′kkδij

)(
σ′ji −

1

3
σ′kkδji

)
=

1

2

(
σ′ijσ

′
ji −

1

3
(σ′kk)

2
)

(76)

We may therefore express f explicitly in terms of the effective stress

f(σ′ij) =
1

2
σ′ijσ

′
ji −

(
B2 +

1

6

)
(σ′kk)

2 − 2ABσ′kk −A2 = 0 (77)

If we assume for the sake of simplicity that the material under consideration is both
linearly elastic and isotropic, then we may express the effective stress in terms of the
total elastic skeleton strain and the Lamé parameters

σ′ij = 2µεij + λδijεkk (78)
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so that f may now be expressed in terms of the elastic properties, as well as the increment
of skeleton strain

f(µ, λ, εij) =
1

2

(
4µ2εijεji + (4µλ+ 3λ2)ε2

kk

)
(79)

−
(
B2 +

1

6

)
(4µ2 + 12µλ+ 9λ2)ε2

kk − 2AB(2µ+ 3λ)εkk −A2

Taking the derivative of f with respect to both µ and λ, we obtain

∂f

∂µ
= 4µεijεji + 2λε2

kk −
(
B2 +

1

6

)
(8µ+ 12λ)ε2

kk − 4ABεkk (80)

∂f

∂λ
= (2µ+ 3λ)ε2

kk −
(
B2 +

1

6

)
(12µ+ 18λ)ε2

kk − 6ABεkk (81)

Using the chain rule of differentiation, we may write

∂f

∂D
=
∂f

∂µ

∂µ

∂D
+
∂f

∂λ

∂λ

∂D
(82)

All that remains to be done is to fine explicit derivatives of the Lamé parameters with
respect to the damage variable. To do this, however, we must decide how we would like
the material parameters to vary with D.

We propose the following material degradation scheme:

µ(D) = µ0D (83)

λ(D) = λ0 +
2

3
µ0(1−D) (84)

which has the property that the bulk modulus K of the solid skeleton is invariant with
respect to the damage variable, i.e.

K(D) = λ(D) +
2

3
µ(D) = λ0 +

2

3
µ0 = K0 ∀D (85)

This is desirable because we do not want to degrade the compressibility of the solid
constituent. If we assume that the fractured rock mass will experience only positive
pressures (given a sufficient depth below ground,) we make the assertion that the frac-
tured rock should still maintain relatively the same compressibility. That is to say, a
‘crushing’ type of failure involving the collapse of pore spaces interior to the rock is not
the sort of behavior that we would expect to see in these sorts of problems. This would
not, however, be the case if we were to account for dilation of the fractured rock in the
event of negative pressures. Otherwise, we should anticipate the shear stiffness of the
rock to be linked directly to the extent of damage in the rock (to emulate the behavior
of mode II and III fracture.)

Finally, we may express the derivatives of the Lamé parameters with respect to the
damage variable as

∂µ

∂D
= µ0;

∂λ

∂D
= −2

3
µ0 (86)
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which results in
∂f

∂D
=

(
∂f

∂µ
− 2

3

∂f

∂λ

)
µ0 (87)

Up to this point, we have only considered material degradation of the solid matrix.
However, we would also like to account for changes in the permeability of the material.
We would anticipate it to be the case that the more damaged the material has become,
the higher the intrinsic permeability will be. In a very simplistic way, we suggest the
following relation

κij(D) =
κ

D
δij (88)

where we will now only consider isotropic material behavior, resulting in a scalar valued
permeability parameter κ.

While the total stress σij in the composite poroelastic material depends upon con-
tributions from both the effective stress in the skeleton as well as the fluid pressure,
we remark that failure of the solid material should still only depend upon the effective
stress state within the skeleton σ′ij , and not upon the total stress. This implies that
we may directly make use of the previously derived evolution law for D. It should be
observed, however, that the effective stress state will still depend indirectly upon the
fluid pressure. We write the effective stress as follows:

σ′ij = σij + bδijp (89)

where again, we assume that Biot’s modulus is now isotropic, resulting in bij = bδij . For
an assumed total stress state of the material that is invariant with respect to time, and
for b > 0, it is clear that an increase in the fluid pressure p will result in a corresponding
increase in the I1 effective stress invariant σ′kk, with the J2 invariant remaining constant.
For B < 0, which occurs for σt < σc, it can be seen that this will result in increase in
the value of f , meaning that failure of the material may be induced through an increase
in the hydraulic pressure, which is precisely what we desire.

For a given time step, the numerical scheme that we will choose to adopt will be
to first make a prediction of the end-step damage state: D(m+1) = D(m). We can then
perform the finite element computations to solve the poroelastic problem for the current
time step, given by equation 70. This will provide us with skeleton displacements at the
end of the current time step u(m+1), which can be used to compute the end-step skeleton

strains ε
(m+1)
ij . We may then compute

f(D(m+1), ε
(m+1)
ij ) and

∂f

∂D
(D(m+1), ε

(m+1)
ij ) (90)

which we may use to compute corrected values of the damage variable D
(m+1)
i+1 through

equation 75. The corrections could then be modified to satisfy

D
(m+1)
i+1 ∈ (0, D(m)] (91)
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such that we prohibit damage reversal from occurring. We may continue to iterate the
solution in this manner until we have achieved sufficient convergence in the solution, i.e.

||Di+1 −Di|| < tol (92)

or until we have surpassed some maximum number of iterations for the current time
step.

4 MATLAB Implementation

In an effort to validate our development of the equations of poroelasticity, it became of
interest to pursue a two-dimensional, finite element implementation of linear poroelastic-
ity within a simple MATLAB routine. With this in hand, we could explore some simple
test problems, and verify if the behavior of the solutions agreed with our intuition.

The simplest implementation that one might conceive of would be to study only
isotropic and time invariant material behavior. For the case of an isotropic material,
the relations between the poroelastic constants (based on the derivations presented in
reference [4]) are as follows:

For Biot’s modulus, as we have alluded to in the previous section, we may write

bij = bδij ; b = 1− K

Ks
(93)

where K is of course the bulk modulus of the solid skeleton which we are already ac-
quainted with, and Ks is the intrinsic bulk modulus of the solid constituent. It may
be noted that for the incorporation of damage evolution into our model, b(D) = b0∀D,
given that we have imposed the requirement in our damage model that K(D) = K0∀D,
and because Ks is likewise invariant with respect to D.

For the fluid capacity term, we may write

1

M
=

1

N
+

φ

Kf
;

1

N
=
b− φ0

Ks
(94)

where Kf is the intrinsic bulk modulus of the fluid. Under the assumption of small
deformations, φ ≈ φ0, and we see that 1

M will likewise be invariant with respect to D.
As stated previously, the intrinsic permeability, for the case of an isotropic porous

medium, may be expressed as

κij = κδij ; κ(D) =
κ0

D
(95)

but within the context of our MATLAB implementation, we will impose D(t) = 1.0∀t,
in correspondence with our statement of time invariant material behavior.

For a linearly elastic and isotropic skeleton, the relation between effective stress and
skeleton strain (as described in the previous section) is simply

σ′ij = 2µεij + λδijεkk (96)
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For two-dimensional poroelasticity, we consider only the case of plane strain.
For the finite element formulation, we will consider only the fully-integrated, isopara-

metric, four-node bilinear quadrilateral element. With each node of the element, we will
choose to associate two skeleton displacement degrees of freedom (in the two coordi-
nate directions of the two-dimensional problem,) and a single fluid pressure degree of
freedom. In this way, we may utilize the same shape functions and their derivatives to
interpolate the values of these quantities on the interior of the element, and to perform
the appropriate integrations within the element. We will use Gaussian quadrature to
carry out the integrals described in equations 54 through 58 and equations 61 through
63. The linear system described by equation 70 can be expressed symbolically as

By(m+1) = Ay(m) + F (97)

The matrices A and B, as well as the forcing vector F, may be assembled in typical finite
element fashion. Once done, we effectively have in hand an implicit update equation for
the global vector of unknowns y. For the sake of avoiding the difficulties that can be
inherent in iterative solution methods, we will choose to employ a direct linear solution
method as a means of obtaining the updated skeleton displacements and pressures at
the next time step.

For simplicity, our MATLAB implementation admits only homogeneous essential
boundary conditions (i.e. only zero pressures or displacements on ∂pB and ∂uB, respec-
tively.) Only zero flux boundary conditions were implemented for the natural B.C.s on
∂VB. And, we will restrict the prescribed traction vectors on ∂tB to be strictly normal
to the surface of the body, and constant in magnitude (a pressure-type traction.) Body
force has also been neglected, in the interest of observing fluid flow due only to pressure
potential.

The visualization capabilities of MATLAB were utilized to the extent that fluid pres-
sure values could be plotted in a colormap on the deformed body. And the displacements
and pressures at each time step could then be plotted sequentially to form an animated
representation of the time-dependent solution.

We now demonstrate some of the visual results obtained from the MATLAB im-
plementation for a simple test problem: a block of poroelastic material subjected to a
sudden increase in confining pressure, with zero displacement and pressure initial con-
ditions. The boundary conditions for this problem are illustrated in figure 4.

Figure 4: Boundary conditions for MATLAB test problem
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As stated previously, we will only admit homogeneous essential boundary conditions
for this problem. In particular, the displacement components normal to the surfaces
on ∂uB are set equal to zero, and the fluid pressure on ∂pB is set equal to zero as
well. Normal fluid fluxes on ∂VB are likewise equal to zero. The normal (pressure-type)
traction boundary condition on ∂tB will be made a time-varying quantity. Specifically,
ti = −P (t)ni, where P (t) may be thought of as the magnitude of the confining pressure.
This test problem makes use of quarter symmetry, in that we are effectively only modeling
the top-right corner of a cube of poroelastic material that has been suspended in a zero-
pressure fluid, and which is subjected to an increase in the total surrounding pressure
on the composite.

The first case that we investigate will have P (t) defined as follows

P (t) =

{
Pt/tp 0 ≤ t ≤ tp
P tp < t

(98)

In essence, the confining pressure will ramp up to some constant value of P at time tp.
The plotted results are shown in figure 5 for selected values of t.

Figure 5: MATLAB test problem for P (t) defined in equation 98

As seen in figure 5, the domain has been discretized into a 10× 10 Cartesian mesh.
While we do not provide a color scale for the pressure values, blue may be thought of as
p = 0, while red corresponds to the maximal value of p attained for all time. Reviewing
the results, we observe the effect of the increase in confining pressure between t = 0 and
t = tp on the fluid pressure within the medium. Fluid pressures on ∂uB (the draining
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boundary) are of course seen to be equal to zero, but fluid pressures interior to the
block of material reach a maximal plateau. The poroelastic skeleton is also observed to
have compressed somewhat due to the external loading. For values of t > tp, we see
that the fluid pressure exhibits the diffusive behavior that we would expect, maintaining
higher pressure at the center of the block of material (the lower-left portion of our
quarter symmetry block) as the fluid slowly diffuses out along the draining boundary.
Over time, the solution equilibrates back to a zero pressure state in the fluid, while
the skeleton continues to compress as it begins to bear more of the total confining
pressure. Qualitatively, this solution behavior agrees with our intuition, confirming that
our development of the equations of poroelasticity produces a result that at least appears
to be correct.

However, it is important that we consider the robustness of the method. In particular,
we will examine a slightly different definition of P (t) for our problem, such that

P (t) = P ∀t (99)

This is equivalent to an impulsively applied external confining pressure at t = 0. The
results are depicted in figure 6.

Figure 6: MATLAB test problem for P (t) defined in equation 99

For the impulsive loading just described, we obtain spurious pressure oscillations in
our solution, as seen from the first few times steps depicted in figure 6. Clearly, our
solution method is not entirely robust against certain choices of boundary and initial
conditions. It should be stated that the oscillatory behavior of the pressure solution
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is a well-known issue with the coupled system of poroelastic equations (see references
[9] and [10].) There exist a variety of techniques that have been successfully employed
to mitigate this sort of behavior, among them the fluid pressure Laplacian stabilization
(FPL) method described in reference [10]. FPL adds a stabilization term to the right-
hand side of the weak form in equation 40, namely

BFPL(q, p) =

∫
B
τq,ikij ṗ,jdv (100)

where τ is a selected stabilization parameter that involves the poroelastic constants, as
well as a characteristic element length scale. For the time being, we will choose not to
implement this stabilization technique, but we make note of the fact that our solutions
may well encounter difficulties for certain choices of problem parameters. We leave the
use of FPL stabilization as a topic for further research.

We will examine one last test problem for our MATLAB code before moving on to
our implementation in GEOS. Specifically, we would like to see what would happen if
we were to consider the same problem as shown in figure 5, but with the inclusion of a
more permeable layer of material along the bottom edge of the quarter symmetry block.
We define a spatially varying κ(x) as

κ(x) =

{
100κ 0 ≤ x2 ≤ he
κ he < x2

(101)

where he is the height of a single element in the mesh. This implies that the bottom
layer of elements will have a permeability 100 times greater than for the rest of the block
of material. The results of this test are depicted in figure 7.

The observed results in figure 7 appear to make intuitive sense. Because the satu-
rating fluid is allowed to drain out of the material more easily in the permeable layer, it
does not sustain as high of fluid pressures. As a result, the fluid within the rest of the
block of material may either flow out of the exterior boundary, or through the draining
layer. This result is significant, in that the behavior of the permeable layer emulates the
behavior of a crack, which we would anticipate to more easily convey fluid. This suggests
that perhaps a homogenized approach for modeling crack behavior may yet produce the
results that we seek.
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Figure 7: MATLAB test problem for P (t) defined in equation 98, and k(x) defined in
equation 101

5 GEOS Implementation

In what proceeds, we will elucidate the details of our poromechanics implementation
within the GEOS code framework. We begin by briefly summarizing the existing accom-
modations for code development within GEOS, and our approach to the implementation.

GEOS is a C++ based code, developed for parallel computation of hydro-fracture
problems. The existing framework of the code is designed to accommodate the addition
of a variety of physics “solvers” (computation modules that are focused around the
modeling of a specific type of physics.) A solver ‘object’ is typically implemented as
a C++ class. Different solvers may act as ‘base’ classes, from which are derived more
specific applications of a particular physics. For example, the ‘Lagrange’ family of solvers
all derive from a ‘LagrangeSolverBase’ class, which by itself cannot be instantiated, as
it contains a number of pure virtual functions. It is up to the derived classes (such
as ‘LagrangeSmallStrainLinearElastic’) to provide the implementation of these virtual
methods contained in the base class. Apart from deriving from other classes, solvers
may also be constructed as a ‘composition’ of various sub-solvers. This is the case for
many of the coupled solvers, which link the physics for the flow simulation to the physics
of the solid deformation. For a particular problem, any number of physics solvers may
be instantiated and used for the simulation, all of which are owned hierarchically by a
“problem manager” object. It is the problem manager which organizes the overall finite
element simulation for a particular problem, but it is the solvers which carry out the
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actual computations. This being the case, the creation of a poromechanics based physics
solver is a likely place for us to begin our implementation.

Many of the high-level actions common to all physics solvers (such as determining the
solution to a linear system of equations) are already implemented within the ‘SolverBase’
class. This reduces some of the burden of creating a new solver from scratch, as we may
inherit much of the basic functionality. As a first measure, we will need to specify certain
quantities of interest for the poroelasticity problem. In particular, we may assign data to
the nodes of a mesh, corresponding to the displacement and pressure degrees of freedom.
We will also carry data for the incremental displacements and pressures at the nodes,
as well. Global degree of freedom indicies are also associated with the nodes, which find
their use in the assembly and solution of the full system of linear equations. We may also
associate data with the elements of the mesh. Namely, we would like to assign certain
fundamental poroelastic properties to individual elements, such as the skeleton stiffness
parameters, porosity, and intrinsic permeability. From these (for the case of an isotropic
poroelastic material,) we may determine the other properties, such as Biot’s modulus
and the fluid capacity. It would be preferable to associate these material properties
with the integration points of the elements, but for the sake of keeping the formulation
general and able to accommodate any number of different element types, we will forgo
this approach. Parameters associated with the problem as a whole may be stored as
data members of the solver object. These include values for Ks, Kf , ρ0

s, ρ
0
f , σt, σc, and

gi, among others. A number of other solver-specific parameters (such as convergence
tolerance and a maximum iteration number) can likewise be stored by the solver object.

At the level of the user interface, the solver needs to be capable of supporting ap-
propriate specification of these aforementioned parameters and data fields for a given
problem. GEOS parses problem input data through an user created XML file, which
contains directives for the types of solvers to use, mesh data, node sets, boundary con-
ditions, initial conditions, time variability, and output. Callable functions within the
GEOS framework exist whose purpose is to facilitate reading this input data. These
function calls can be made of use within our solver to incorporate the relevant problem
parameters we need from user specified inputs.

The main body of computations performed by the solver involves the solution of a
finite element system of equations for a given increment of time. Within a single time
step, we will need to assemble a global residual vector, in addition to a global tangent
‘stiffness’ matrix. We use the term ‘stiffness’ in a loose way to refer generally to the
derivative of the nodal residual, though the Kuu portion of this total matrix is the only
quantity truly deserving of being called a stiffness matrix. To this end, we may perform a
loop over the total number of elements in the mesh, collecting the necessary parameters
and field data to be able to compute the local element residual and derivative using
the incremental pressure and displacement form of equation 71. At the element level,
the equation assembly takes place by first looping over the number of quadrature points
q, looping over the nodes of the current element for index a, and once again over the
nodes for index b. GEOS already has in place a library of element classes that will
provide us with precomputed shape function values, their gradients, and values of the
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Jacobian determinant at the quadrature points. With these in hand, we can carry out
the integrals described in equations 54 through 58 and equations 61 through 63. These
element contributions can then be summed into the global system of equations. It may
be of interest to note that in our global system of equations (for u ∈ IR3,) the u1, u2,
and u3 displacement degrees of freedom for node a will be stored in the global degree of
freedom array with indicies 3a, 3a+ 1, and 3a+ 2, respectively, with the pressure degree
of freedom p being stored in the 3a+ 3 global index (for C++ indexing from 0.)

The assignment of appropriate essential and natural boundary conditions may be
handled using some of the existing implementation used in other, similar solvers. For
the essential boundary conditions (fluid pressures and skeleton displacements) we may
borrow much of the same techniques used for specification of solid displacements used in
the Lagrange family of solvers. This effectively involves zeroing out the equation rows
corresponding to the constrained degrees of freedom for the problem within our global
system of equations. The corresponding ‘dof’ values in the global residual vector can then
be replaced by the prescribed displacement or pressure values, with the diagonal entires
in the global ‘stiffness’ matrix for these entires set equal to 1. An appropriate scaling of
these equation rows would need to be performed. For the natural boundary conditions,
we would need to perform surface integrals over element facets on the boundary of the
body. An existing scheme for computing traction boundary condition contributions to
the nodal residual may be utilized, and further adapted for the case of a prescribed flux
boundary condition.

As alluded to previously, the solution of the resulting system of poroelasticity equa-
tions (for the incremental pressures and displacements) can be solved using the existing
linear solver packages. Though we may extensibly make use of the Trilinos iterative
solvers available for use, for debugging purposes we will choose only to use a direct
linear solver. Ideally, we would pursue a time stepping scheme in which we select an
appropriate stable time step size in an effort to avoid the spurious pressure oscillations
seen in our MATLAB implementation. However, for the sake of simplicity, we will only
allow for a constant user-specified time step value to be used.

For the incorporation of our local damage mechanics model, we will need to introduce
an outer Newton-Raphson iteration loop within a given time step that will progressively
evolve the damage variables within each element according to the algorithm described
in section 4. From the norm of equation 92, we more explicitly select a max norm over
the elements e, such that

max
e

|De
i+1 −De

i |
De
i

< tol (102)

which should mitigate the worst-case relative error in the damage variable for a given
Newton-Raphson iteration.

With our poromechanics solver in place, we now examine a few test problems to
verify the correctness of our implementation, as well as demonstrate the capabilities and
limitations of our approach for modeling hydro-fracture problems.

We begin by exploring an identical problem to the one described for our MATLAB
implementation, now in the case of three dimensions. Instead of modeling a single quad-
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rant of a two-dimensional block of poroelastic material suspended in a zero-pressure fluid,
we model a single octant of a three-dimensional cube placed under similar conditions.
As was the case for our MATLAB test problem, we will apply an external confining
pressure to the poroelastic cube (the positive x, y, and z faces,) using a definition for
P (t) as in equation 98. The results (generated with the VisIt visualization tool) are
depicted in figure 8.

Figure 8: Poroelastic cube subjected to a confining pressure. Plotted results for the fluid
pressure on the deformed mesh at selected times.

As we would hope, the qualitative results are very much the same as what we obtained
for the two-dimensional MATLAB test problem. Though we will not show the plotted
results for the case when P (t) is specified to be an impulsively applied confining pressure,
we note that the same pressure oscillations in the solution are present as for the MATLAB
test problem. The implementation of a fluid pressure stabilization term is left as a
subject for further development, but will not be pursued at this time. It is sufficient for
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our purposes at the moment to only explore problems in which the problem parameters
produce stable results. Though it is difficult to say with absolute certainty that the
implementation correctly models the true physical process, we take these results as
sufficient evidence that the poromechanics component of our solver is working properly,
or at least as expected. However, the efficacy of the damage mechanics portion is yet to
be determined.

Therefore, we endeavor to devise an appropriate test problem that will help to give
us an idea of whether our material damage model produces desirable results. In the
interest of being able to visualize the result more easily, we will explore a simple two-
dimensional problem. Again, we will define a square block of homogeneous and isotropic
poroelastic material. The skeleton displacements normal to the entire boundary of the
problem will be assigned zero value, effectively constraining the block of material from
expanding. Zero flux will be prescribed on all external facets, with the exception of
the right-hand edge of the block. To this face, we will assign all zero fluid pressure
boundary conditions, with the exception of a small collection of facets near the bottom
edge which will have a non-zero, inward directed fluid flux. These boundary conditions
are represented pictorially in figure 9.

Figure 9: Boundary conditions for damage mechanics test problem

Physically, we may conceive of the problem as being one where we are injecting fluid
over a small region into a confined block of material. If the fluid injection rate is high
enough, then it should be possible for us to induce material failure. To more accurately
emulate the fracture behavior of rock, we will set the tensile failure stress to be much
less than the compressive failure stress (σt << σc.) Running this problem at a fairly
coarse refinement level, we obtain the results depicted in figures 10 and 11.

In figure 10, we observe that the extent of damage in the material does appear
to propagate in a crack-like fashion, initiating at the bottom-right hand corner, and
progressing inward toward the center of the block. However, there does appear to be
some strange behavior in the bottom-rightmost element of the mesh, which despite being
the most dilated element, it does not appear to have received as much damage as one
might expect. It is important to remark that our failure criterion was developed to
produce fracture within elements experiencing high deviatoric stresses. However, given
that the bottom-rightmost element has many of its displacement degrees of freedom
constrained, it is not allowed to deform in a manner that would produce shear strains
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Figure 10: Damage mechanics test problem for a 10 × 10 mesh. Plotted results for the
damage variable D on the deformed mesh at selected times.

within the element. This may explain why this element in particular has received less
damage than the elements interior to the body, which are seen to deform primarily in
shear, as we would anticipate. A similar phenomenon may explain why the elements
with constraints on the bottom and right edges of the body are also less damaged,
despite their proximity to the fluid injection site. It is also important to note that our
implementation of the damage algorithm only considered the averaged strain within the
element, since we chose to associate only a single damage variable with a given element.
We may well be able to improve our results if we instead consider the evolution of damage
at individual integration points. This perhaps indicates some issues with our damage
model as it is currently implemented, which may provide opportunities to make future
improvements, though we choose not to pursue them at present.

We confirm that the crack is fluid pressure-driven by observing the results in figure
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Figure 11: Damage mechanics test problem for a 10 × 10 mesh. Plotted results for the
fluid pressure p on the deformed mesh at selected times.

11, which shows zones of increased fluid pressures in the same locations as the damaged
zones. We may conceive of the crack ‘front’ as being located where there is a sufficient
fluid pressure gradient. Elements at the crack front receive a high influx of fluid, which
results in a fluid pressure increase. This results in a corresponding decrease in the
skeleton effective pressure, inducing material failure. As the element becomes more
damaged, its hydraulic conductivity increases, allowing for fluid to pass more easily
through it, relieving the high pressure gradient. This results in the crack front being
extended to the adjacent elements, who in turn become damaged, thus resulting in a
behavior that emulates crack propagation. However, it is difficult to distinguish a crack
tip from a fractured face within the material, particularly for the isotropic material
degradation scheme which we have chosen to pursue. Since there will also be a high
pressure gradient in directions normal to the crack plane, there is little that differentiates
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a true crack tip from the rest of the boundary of the entire damaged zone. This signals
a need for further exploration of anisotropic material degradation schemes, in which
we might consider (in addition to the damage parameter) a vector quantity indicating
a crack normal direction. This can then be used to degrade the material properties
orthotropically (in the plane of the presumed crack,) only allowing increased fluid flow
to occur within this plane, and not in the crack normal direction. This might help aid
in resolving a crack tip, but it presents difficulties if one were to desire the intersection
of multiple cracks at differing angles. These are left as topics to be explored in future
work.

To test whether our results are influenced by the mesh size, we will explore the same
problem at a higher grid refinement level (now 20× 20, rather than the original 10× 10
mesh.) The corresponding plots of the damage and pressure variables are depicted in
figures 12 and 13, respectively.

Despite some minor discrepancies (particularly near the fluid injection site,) the
results appear to scale reasonably well at a higher resolution, maintaining much of the
same macroscopic characteristics observed for the 10 × 10 refinement level. The extent
of damage is observed to be much more localized and severe for individual elements,
but this would seem to agree with our conception of a homogenized crack becoming
‘smeared’ out in a coarser mesh. The behavior of the fluid pressure similarly conforms
to our previously stated expectations. Now, however, we can see a more sharply defined
crack boundary, corresponding to a much sharper pressure gradient within individual
elements. It may be speculated that further resolution of the crack boundary may be
had if we further refine the mesh.

Though these results are encouraging, they do raise some concerns surrounding ad-
equate representation of the crack. Ideally, we would prefer crack ‘width’ to become
smaller as we refine the mesh, localizing to only a small band of elements. However,
this does not appear to be the case for our damage model. This may be attributed to
the isotropic degradation. Since damage does not occur in any preferential direction,
the ‘width’ of cracks may become arbitrarily large. It may be postulated that for an
anisotropic damage scheme, we may be able to alleviate this problem. But once again,
this will be a topic left open for further development.

6 Conclusions and Future Work

Based on the results obtained through the limited number of test problems we observed,
it is clear that significant work still would need to be done before such an approach
would be reasonable for modeling large-scale hydro-fracture problems.

In particular, our damage model would likely be the component in most need of
improvement. As suggested in the previous section, the development of an anisotropic
damage scheme would be an appropriate first step to this end. This would hopefully
resolve some of the issues surrounding the proper identification of crack tips, and the
limiting of crack widths under mesh refinement. Another issue to consider would be the
differentiation between crack initiation versus crack propagation. Ideally, crack initiation
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Figure 12: Damage mechanics test problem for a 20 × 20 mesh. Plotted results for the
damage variable D on the deformed mesh at selected times.

should occur at a much higher stress level than crack propagation, but our present model
makes no distinction between the two. This might be cause for the development of an
appropriate fracture initiation criteria, that may well necessitate a non-local approach
in which we would check for the locality of a crack tip in adjacent elements. Cohesive
zone elements may also be topic to consider, but this assumes that we would be able to
properly identity crack tips.

We might also consider revising the nature of the material degradation. We note that
in keeping the bulk modulus of the skeleton constant while degrading the shear modulus,
this would result in the ratio of K/G approaching infinity as the damage variable D goes
to 0. In other words, this would be equivalent to the poroelastic material approaching
the incompressible limit, which would lead to the notorious issue of volumetric locking.
For this reason, it would be of necessity for us to find a way to alleviate this problem,
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Figure 13: Damage mechanics test problem for a 20 × 20 mesh. Plotted results for the
fluid pressure p on the deformed mesh at selected times.

possibly through a mixed/penalty approach in the element formulation. Otherwise,
we might consider placing a lower limit on the damage variable to prevent this from
becoming an issue.

Given the true physical behavior of the cracks, we might also desire the material
deformation to behave in a manner more akin to a typical plasticity model, which may
have pressure-dependent stiffness properties. Since we may think of the cracks as likely
being jagged surfaces, a compressed region of cracked rock should therefore still maintain
the majority of its shear stiffness. A slipping of two surfaces along a given crack plane
could be conceived of as a kind of ‘crack strain,’ much akin to a plastic strain, which
would be altogether separate from the elastic strain. In this way, slippage along cracks
could occur only so long as there is sufficient fluid pressure to force the crack opening.
However, if the fluid pressure were to decrease, we would expect the crack to close, and
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for the material to enter back into an elastic region (albeit now shifted by the total
cracked strain.) To overcome the jagged surfaces of the cracked faces, we might also
anticipate some dilational behavior of the rock during slippage, in the same way that a
compacted sand would dilate during shear deformation. It may then be of interest to
perhaps adapt plasticity models typically associated with sands for application within
our own damage model.

Though the basic physics behavior of the poromechanics component of our solver
appears to work reasonably well for certain choices of problem parameters, we still
would likely need to implement some form of fluid pressure stabilization. High pressure
oscillations in the solution could lead to the initiation or propagation of cracks that might
not otherwise occur. For this reason, a lack of pressure stabilization may prove to be a
significant issue for certain problems. A fully dynamic, finite deformation formulation of
poromechanics may also yield more robust results, in that the dynamics of the poroelastic
skeleton may be of assistance in stabilizing the fluid pressures.

Following some of the aforementioned improvements, we might find ourselves in an
appropriate position to deem whether a homogenized approach is adequate for modeling
hydraulic fracture problems. Such claims may hopefully be established in future work.
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