An Improved Partitioned Element Method for Constructing Higher-Order Shape Functions on Arbitrary Polyhedra

Brian Giffin, Mark Rashid

Department of Civil and Environmental Engineering

University of California, Davis

Polygonal and Polyhedral Discretizations in Computational Mechanics July 20, 2017

14th U.S. National Congress on Computational Mechanics

Motivation

1) Automate the meshing process...

Motivation

2) ...and improve element quality/robustness

Solid mechanics applications

$$\int_{\Omega} \sigma_{ij} v_{i,j} \, d\Omega + \int_{\Omega} \rho(a_i - \bar{b}_i) v_i \, d\Omega - \int_{\Gamma} \bar{t}_i v_i \, d\Gamma = 0$$

Maintain material state data for a finite collection of material points

Must define a discrete quadrature rule

Discrete interpolation operators

$$egin{aligned} u(\mathbf{x}) &= \sum_a arphi_a(\mathbf{x}) \, oldsymbol{u}_a &
abla u(\mathbf{x}) &= \sum_a
abla arphi_a(\mathbf{x}) \, oldsymbol{u}_a) \ egin{aligned} &oldsymbol{u}_q &= \sum_a
abla arphi_a^q \, oldsymbol{u}_a &
abla arphi_q &= \sum_a
abla arphi_a^q \, oldsymbol{u}_a) \end{aligned}$$

Ultimately, we need linear mappings from nodal values to interpolated values and gradients at quadrature points

Partitioned element method

- Partition elements into cells: $\omega_j \subset \Omega_e$
- Solve local approximation problems on the partitioned geometry
 - Obtain linear mappings that approximate smooth, continuous functions

Element partition

Element is partitioned into quadrature "cells" Quadrature weights equal to cell volumes Values and gradients evaluated at cell centroids

PEM approximation space

Solution representation is piece-wise polynomial in each cell (discontinuous at cell boundaries)

 $\mathcal{P}_k(\Omega_e) = \{ u : u |_{\omega_j} \in P_k(\omega_j) \,\forall \omega_j \subset \Omega_e \}$

Weighted minimization of interface discontinuities

Hierarchical construction of shape functions

10 / N

Approximants are constructed in sequence: Nodes ⇔ Edges ⇔ Faces ⇔ Element

Constraints

Continuity:
$$\int_{F} \llbracket u \rrbracket \, da = 0 \qquad \forall F \subset \partial \Omega_{e}$$

Reproducibility:

$$x_q^{\alpha} = \sum_a \varphi_a^q \, x_a^{\alpha} \qquad \nabla x_q^{\alpha} = \sum_a \nabla \varphi_a^q \, x_a^{\alpha} \quad \forall \, |\alpha| \le k$$

Consistency:

$$\int_{\Omega_e} \nabla(x^{\alpha} \varphi) \, dv = \int_{\partial \Omega_e} x^{\alpha} \varphi \, \mathbf{n} \, da \quad \forall \varphi, \, |\alpha| \le k - 1$$

Stability:

$$\inf_{u \in \mathbb{U}} \sup_{v \in \mathbb{V}} \frac{a(u, v)}{||u|| \, ||v||} > 0$$

Constraints

Continuity: enforced weakly via penalty terms $\int_{F} \llbracket u \rrbracket \, da = 0 \qquad \forall F \subset \partial \Omega_{e}$

Reproducibility: obtained through minimization

$$\begin{aligned} x_q^{\alpha} &= \sum_a \varphi_a^q \, x_a^{\alpha} \qquad \nabla x_q^{\alpha} = \sum_a \nabla \varphi_a^q \, x_a^{\alpha} \quad \forall \, |\alpha| \le k \\ \textbf{Consistency: enforced via Lagrange multipliers} \\ \int_{\Omega_e} \nabla(x^{\alpha} \varphi) \, dv = \int_{\partial \Omega_e} x^{\alpha} \varphi \, \mathbf{n} \, da \quad \forall \varphi, \, |\alpha| \le k - 1 \end{aligned}$$

Stability: require sufficient quadrature cells

$$\inf_{u \in \mathbb{U}} \sup_{v \in \mathbb{V}} \frac{a(u, v)}{||u|| \, ||v||} > 0$$

High-order PEM approximants

Requirements:

- Approximation space with high-order completeness
- High-order consistency constraint enforcement
- o Sufficiently accurate quadrature rule

Over-constrained approximants

• Enforcing high-order consistency constraints on the shape functions over-constrains the PEM minimization problem

 \circ Results in loss of reproducibility

(Table of errors)

Petrov-Galerkin approach

Only enforce consistency on the **test functions**

Results in a Petrov-Galerkin scheme

 Trial solution space maintains reproducibility
 Can use low-order quadrature rules

15 / N

Stability

- Test functions are obtained via L₂ projection of corresponding trial functions onto a constrained sub-space of the PEM approximation space
- Trial and test spaces differ only minimally

 Well-balanced spaces
 Sufficiently stable

16 / N

2nd order patch test

Employing the P-G approach, quadratic elements pass 2nd order patch tests

2d example problem

Examine solution accuracy and convergence for linear and quadratic polygonal PEM elements

Accuracy comparison

Ongoing efforts

- Try to recover optimal convergence rates
- Add internal element degrees of freedom
- Use selective p-refinement for thin domains

Questions?

20 / N

bdgiffin@ucdavis.edu