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Motivation

1) Automate	the	meshing	process…
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Motivation

2) …and	improve	element	quality/robustness
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Solid	mechanics	applications

Maintain	material	state	data	for	a	finite	
collection	of	material	points
oMust	define	a	discrete	quadrature	rule
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Discrete	interpolation	operators

Ultimately,	we	need	linear	mappings	from	nodal	values	to	
interpolated	values	and	gradients	at	quadrature	points
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Partitioned	element	method

• Partition	elements	into	cells:
• Solve	local	approximation	problems	on	the	
partitioned	geometry
oObtain	linear	mappings	that	approximate	
smooth,	continuous	functions
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Element	partition

Element	is	partitioned	into	quadrature	“cells”
oQuadrature	weights	equal	to	cell	volumes
o 	Values	and	gradients	evaluated	at	cell	centroids
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PEM	approximation	space

Solution	representation	is	piece-wise	polynomial	in	
each	cell	(discontinuous	at	cell	boundaries)
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Weighted	minimization	of
interface	discontinuities
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Hierarchical	construction	of	
shape	functions

Approximants	are	constructed	in	sequence:
Nodes						Edges						Faces						Element
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Constraints
Continuity:	enforced	weakly	via	penalty	terms

Reproducibility:	obtained	through	minimization

Consistency:	enforced	via	Lagrange	multipliers

Stability:	require	sufficient	quadrature	cells

	

11	/	N	



Constraints
Continuity:	enforced	weakly	via	penalty	terms

Reproducibility:	obtained	through	minimization

Consistency:	enforced	via	Lagrange	multipliers

Stability:	require	sufficient	quadrature	cells

	

12	/	N	



High-order	PEM	approximants

Requirements:
o Approximation	space	with	high-order	completeness
oHigh-order	consistency	constraint	enforcement
o Sufficiently	accurate	quadrature	rule
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Over-constrained	approximants

• Enforcing	high-order	consistency	
constraints	on	the	shape	functions	over-
constrains	the	PEM	minimization	problem
o Results	in	loss	of	reproducibility
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(Table of errors)



Petrov-Galerkin	approach

Only	enforce	consistency	on	the	test	functions
• Results	in	a	Petrov-Galerkin	scheme

o Trial	solution	space	maintains	reproducibility
o Can	use	low-order	quadrature	rules
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Stability

• Test	functions	are	obtained	via	L2	projection	
of	corresponding	trial	functions	onto	a	
constrained	sub-space	of	the	PEM	
approximation	space

• Trial	and	test	spaces	differ	only	minimally
oWell-balanced	spaces
o Sufficiently	stable
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2nd	order	patch	test

Employing	the	P-G	approach,	quadratic	elements
	 pass	2nd	order	patch	tests
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2d	example	problem
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Examine	solution	accuracy	and	convergence	for	
linear	and	quadratic	polygonal	PEM	elements



Accuracy	comparison
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Ongoing	efforts

• Try	to	recover	optimal	convergence	rates
• Add	internal	element	degrees	of	freedom
• Use	selective	p-refinement	for	thin	domains

Questions?
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bdgiffin@ucdavis.edu


