
Brian Doran Giffin
Assistant Professor

Structural Engineering & Mechanics
Oklahoma State University

July 20-24, 2025

18th U.S. National Congress
on Computational Mechanics

Computational Methods
 for Inverse Problems

and Optimal Experimental Design

Exactly Bit-Reversible
Computational Methods for

Memory-Efficient Adjoint Sensitivity
Analysis of Dissipative Dynamic Systems

1

The adjoint state method provides an accurate and
efficient means of computing sensitivities for
dynamic optimization and inverse problems

2

𝑡
Forward problem

Adjoint problem
−𝑡

Common implementations of the discrete adjoint
method use checkpointing to rematerialize forward
solution states necessary for backpropagation

3

𝑡!𝑡!"#

Return to saved solution checkpoint

Step forward in time

𝑡
Forward update:

Solution of the adjoint problem must:
• Store the forward solution at all prior time states

(more memory), or …
• Rematerialize forward solution from “checkpoints”

(more computations)

𝒖! = 𝒇 𝒖!"#

Common implementations of the discrete adjoint
method use checkpointing to rematerialize forward
solution states necessary for backpropagation

4

𝑡!𝑡!"#

Return to saved solution checkpoint

Step forward in time

𝑡

Solution of the adjoint problem must:
• Store the forward solution at all prior time states

(more memory), or …
• Rematerialize forward solution from “checkpoints”

(more computations)

𝒖! = 𝒇 𝒖!"#
Forward update:

What if we could go backwards in time?

5

Hypothetical solution:
• Reverse the computations,

and recover forward solution at each preceding step
• Requires minimal memory and recomputation

𝑡!𝑡!"#

Reverse computations to
step backwards in time

𝑡
Backward update:
𝒖!"# = 𝒇"# 𝒖!

The leapfrog time-integrator is trivially reversible
for Hamiltonian systems

6

𝑢!$#𝑣!$½
𝑡

𝑢!𝑣!"½

𝑢!$#𝑣!$½
−𝑡

𝑢!𝑣!"½

𝑢!"# ← 𝑢! + 𝑣!"½Δ𝑡

𝑣!%½ ← 𝑣!"½ − 𝑎 𝑢! Δ𝑡

𝑢! ← 𝑢!"# − 𝑣!"½Δ𝑡

𝑣!"½ ← 𝑣!%½ + 𝑎 𝑢! Δ𝑡
Forward update:

Backward update:

Naïve time-reversal leads to inexact
rematerialization due to round-off errors from
floating-point arithmetic

7

𝑢!"# ← 𝑢! + 𝑣!"½Δ𝑡

𝑣!%½ ← 𝑣!"½ − 𝑎 𝑢! Δ𝑡

𝑢! ← 𝑢!"# − 𝑣!"½Δ𝑡

𝑣!"½ ← 𝑣!%½ + 𝑎 𝑢! Δ𝑡
Forward update:

Backward update:

Using floating-point arithmetic :

Represent displacement and velocity degrees of
freedom as fixed-width (32- or 64-bit) integers with
implied (but differing) problem-dependent radices

8

𝑥 = 𝑚×𝑅!

7.560239 = 7560239×10"#
fixed

radix exponentmantissa

𝑥 ∈ −2147.483648,+2147.483647 (32-bit int)

𝑥 ∈ −9.223…×10$%, +9.223…×10$% (64-bit int)

e.g.

Round-off errors from addition/subtraction can be
eliminated using fixed-point arithmetic, resulting in
exactly “bit-reversible” time-integration

9

Idea previously applied to:
• Molecular dynamics

(Levesque and Verlet, 1993)
• Continuum mechanics

(Kum and Hoover, 1994)
• N-body simulations

(Rein and Tamayo, 2017)
• Chaotic dynamic systems

(Jos Stam, 2022)
josstam.com/reversible

Using fixed-point arithmetic :

For dissipative dynamic systems (with damping),
fixed precision arithmetic alone is insufficient to
ensure exact bit-reversibility

10

𝑪

𝑣! ← 𝑣!"½ + 𝑎 𝑢! Δ𝑡/2	
𝑣! ← 𝑣!×

%"&'(/*
%+&'(/*

𝑣!+½ ← 𝑣! + 𝑎 𝑢! Δ𝑡/2	
𝑢!+# ← 𝑢! + 𝑣!+½Δ𝑡	

damping

Addition/subtraction: reversible
Multiplication/division: not reversible

Using fixed-point arithmetic :

Euclidean division of integers results in permanent
loss (“dissipation”) of information in the form of the
remainder after division

11

𝑥 ÷ 𝑎

𝑟 = 𝑥	mod	𝑎

𝑥 − 𝑥	mod	𝑎

Integer division

Remainder

×𝑎𝑥 ÷ 𝑎

𝑥×𝑎 𝑥

Integer multiplication

×𝑎𝑥 ÷ 𝑎

Use the round-off bit buffering approach proposed
by Maclaurin et al. (2015) to define a paired integer
multiplication/division operation

12
𝑎

𝑥

𝑥∗

×

÷

mod

+ 𝑦 = 𝑥×𝑎 + sign 𝑥 𝑥∗ 	mod	𝑎

𝑦∗ = 𝑥∗ ÷ 𝑎

𝑥, 𝑥∗ ×,÷ 𝑎 = 𝑦, 𝑦∗

(ancilla) (garbage)

The inverse paired division/multiplication operation
is obtained by simply permuting the inputs

13
𝑎

𝑥

𝑥∗

𝑥, 𝑥∗ ÷,× 𝑎 = 𝑦, 𝑦∗

÷

×

mod

+ 𝑦∗ = 𝑥∗×𝑎 + sign 𝑥∗ 𝑥 	mod	𝑎

𝑦 = 𝑥 ÷ 𝑎

(ancilla) (garbage)

The paired integer multiplication/division operation
and its permuted inverse are exactly bit-reversible

14
𝑎𝑎

𝑥

𝑥∗

×

÷

mod

+ ×

÷

mod

+ 𝑥∗

𝑥

𝑥, 𝑥∗ ×,÷ 𝑎 ÷,× 𝑎 = 𝑥, 𝑥∗

Bit-reversible fixed-point multiplication is carried
out by approximating the multiplicand as a
rational number

15
𝑞𝑝

𝑥

𝑥∗

𝑦

𝑦∗

×

÷

mod

+ ÷

×

mod

+

𝑥, 𝑥∗ ×,÷
𝑝
𝑞 = 𝑥, 𝑥∗ ×,÷ 𝑝 ÷,× 𝑞 = 𝑦, 𝑦∗

Using paired integer multiplication/division ensures
bit-reversibility for dissipative dynamic systems

16

𝑪

𝑣! ← 𝑣!"½ + 𝑎 𝑢! Δ𝑡/2	
𝑣!, 𝑣!$#∗ ← 𝑣!, 𝑣!∗ ×,÷ #"-.//1

#$-.//1

𝑣!$½ ← 𝑣! + 𝑎 𝑢! Δ𝑡/2	
𝑢!$# ← 𝑢! + 𝑣!$½Δ𝑡	

Addition/subtraction: reversible
Paired multiplication/division: reversible

Using paired integer multiplication/division:

mass-proportional damping:
𝑪 = 𝛼𝑴

Ancilla velocity state variables: 𝑣!∗

Using paired integer multiplication/division ensures
bit-reversibility for dissipative dynamic systems

17

paired integer
multiplication/division

(reversible)

Fixed-point arithmetic

unpaired integer
multiplication/division

(not reversible)

Fixed-point arithmetic

386k degrees of freedom 1000 time steps

Forward solution accuracy, memory, and run-time
performance using paired fixed-point arithmetic is
comparable to that of floating-point arithmetic

18

Floating-point

Run-time: 47.3 s

Fixed-point (reversible)

Run-time: 50.2 s

𝟐×{32-bit int}

𝟏×{64-bit float (double)}

(6% slower)
386k degrees of freedom 1000 time steps

The concept of bit-reversible scalar
multiplication/division can be generalized to achieve
bit-reversible matrix multiplication/inversion

19

𝑨 = 𝑳𝑫𝑼

𝒚 = 𝑨𝒙

E𝒙 = 𝑼𝒙E𝒚 = 𝑫E𝒙𝒚 = 𝑳E𝒚

𝐷-- ≈
.!
/!
∈ ℚ

𝑳 =

1	 0
𝐿*#	 1	

⋯ 0
⋯ 0

⋮ ⋮
𝐿0# 𝐿0*

⋱ ⋮
⋯ 1

𝑼 =
1 𝑈#*
0 1

⋯ 𝑈#0
⋯ 𝑈*0

⋮	 ⋮
0	 0	

⋱	 ⋮
⋯	 1	

𝑫 =

𝐷## 0
0 𝐷**

⋯	 0
⋯	 0	

⋮	 ⋮
0	 0

⋱ ⋮
⋯ 𝐷00

∀𝑖 = 1,… ,𝑁 ∀𝑖 = 𝑁,… , 1

V𝑦- , V𝑦-∗ = V𝑥- , V𝑥-∗ ×,÷ .!
/!

 V𝑥- = 𝑥- + ∑12-𝑈-1𝑥1 𝑦- = V𝑦- + ∑13- 𝐿-1 V𝑦1

The concept of bit-reversible scalar
multiplication/division can be generalized to achieve
bit-reversible matrix multiplication/inversion

20

𝑨 = 𝑳𝑫𝑼

𝒙 = 𝑨"#𝒚

E𝒚 = 𝑳"#𝒚

𝑳 =

1	 0
𝐿*#	 1	

⋯ 0
⋯ 0

⋮ ⋮
𝐿0# 𝐿0*

⋱ ⋮
⋯ 1

𝑼 =
1 𝑈#*
0 1

⋯ 𝑈#0
⋯ 𝑈*0

⋮	 ⋮
0	 0	

⋱	 ⋮
⋯	 1	

𝑫 =

𝐷## 0
0 𝐷**

⋯	 0
⋯	 0	

⋮	 ⋮
0	 0

⋱ ⋮
⋯ 𝐷00

∀𝑖 = 1,… ,𝑁 ∀𝑖 = 𝑁,… , 1

𝒙 = 𝑼"#E𝒙

V𝑥- , V𝑥-∗ = V𝑦- , V𝑦-∗ ÷,× .!
/!

 𝑥- = V𝑥- − ∑12-𝑈-1𝑥1 V𝑦- = 𝑦- − ∑13- 𝐿-1 V𝑦1

𝐷-- ≈
.!
/!
∈ ℚ

E𝒙 = 𝑫"#E𝒚

The proposed set of bit-reversible operations can be
used to implement reversible time-integrators for
common visco-elastic/plastic constitutive models

21

𝐸
𝜎23

𝜀
𝜀4 𝜀5

𝜎 = 𝐸𝜀4

𝜎𝜎 𝜂

Bingham-Maxwell Model:

𝜎 − 𝜂 ̇𝜀5 ≤ 𝜎67

Forward:

Backward:

If 𝐸 𝜀 − 𝜀& > 𝜎'(
𝜀5, 𝜀5∗ ← 𝜀5, 𝜀5∗ ×,÷ 𝜆
𝜀5 ← 𝜀5 + 𝜀7

5 1 − 𝜆

If 𝐸 𝜀 − 𝜀& > 𝜎'(
𝜀5 ← 𝜀5 − 𝜀7

5 1 − 𝜆 	
𝜀5, 𝜀5∗ ← 𝜀5, 𝜀5∗ ÷,× 𝜆

Demonstration: implementation of a reversible
uniaxial visco-plasticity model with a maximum
plastic strain-based failure criterion

22

Floating-point (not reversible) Fixed-point (reversible)

Ongoing and future work

23

• Limitations:
• Overflow!
• Not all models are amenable to a reversible implementation
• Must ensure consistent execution during forward/backward passes

•Alternative bit-roundoff data compression methods
• Inelastic material behavior
• Continuum damage/plasticity/visco-elasticity, fracture, friction

•Compare performance on GPUs
• Does the proposed approach help with minimizing device I/O and latency?

• Application to optimization/inverse problems
• Optimal design of impact-resistant structures

Questions?

