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The adjoint state method provides an accurate and

efficient means of computing sensitivities for
dynamic optimization and inverse problems

Forward problem
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Adjoint problem



Common implementations of the discrete adjoint

method use checkpointing to rematerialize forward
solution states necessary for backpropagation

Solution of the adjoint problem must:

» Store the forward solution at all prior time states
(more memory), or ...

 Rematerialize forward solution from “checkpoints”
(more computations)

Step forward 1n time

Forward update: C N7 N7\ th_1 tn
u, = f(un—l) O—0—— O O t

Return to saved solution checkpoint
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What if we could go backwards in time?

Hypothetical solution:

o Reverse the computations, |
and recover forward solution at each preceding step @ PN

* Requires minimal memory and recomputation

Backward update: th_1 by
U, =) —— —O0—O0——t

Reverse computations to
step backwards in time 5



The leapfrog time-integrator is trivially reversible

for Hamiltonian systems

Forward update:

Unt1, < Unoy, + a(uy)At

Un-14  Up Un+ys  Un+1

r
Un+1 € Up T Un+1/zAt

Backward update:

)|C

Up < Upiqr — UntAt
Un—1 Un Un+v  Un+1 n n+i n+7

—t
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Naive time-reversal leads to inexact

rematerialization due to round-off errors from
floating-point arithmetic

Using floating-point arithmetic : Forward update:

Unt1, < Unoy, + a(uy)At

Upt1 € Up T Un+1/zAt

Backward update:
Up < Uptr = vn+1/zAt

Un—1, < VUpg1s, — a(un)At
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Represent displacement and velocity degrees of

freedom as fixed-width (32- or 64-bit) integers with
implied (but differing) problem-dependent radices

mantissa radix exponent
N /

e R x = mMXRE€ e 7Z
—

fixed
560239 = 7560239x107°

<

eg. /!

x € [—2147.483648, +2147.483647]  (32-bit int)
x € [-9.223..x1012,4+9.223 ..x10'2] (64-bit int)



Round-off errors from addition/subtraction can be

eliminated using fixed-point arithmetic, resulting in
exactly “bit-reversible” time-integration

Using fixed-point arithmetic:

Idea previously applied to:

* Molecular dynamics
(Levesque and Verlet, 1993)

e Continuum mechanics
\ (Kum and Hoover, 1994)
* N-body simulations
\_

v/./ N

\ | (Rein and Tamayo, 2017)
W\ 4 * Chaotic dynamic systems
/ o (Jos Stam, 2022)

josstam.com/reversible
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For dissipative dynamic systems (with damping),

fixed precision arithmetic alone i1s insufficient to
ensure exact bit-reversibility

Using fixed-point arithmetic: C
Strain energy: 0.0263 )
Kinetic energy: 0.0702 damping

Potential enexrgy: 4.5169
Total energy: 4.6134

Uy & Up_1, + alu,)At/2

M—CAt/?2
Uy € Uy X
M+CAt/?2

Vny, < Uy + a(u,)At/2
Uptyp < Up T vn+1/zAt

Addition/subtraction: reversible
I I Multiplication/division: not reversible
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Euclidean division of integers results in permanent

loss (“dissipation”) of information in the form of the
remainder after division

Integer multiplication
x———{‘bh——»swm-———{‘}———»x'\//

Integer division Integer multiplication

x x+ax—xmoda X

r = x mod a

Remainder
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Use the round-off bit buffering approach proposed

by Maclaurin et al. (2015) to define a paired integer
multiplication/division operation

o, x) X+ la = (v, y7)

—> y = xXa + sign(x)|x*| mod a

X —
(ancilla)

—> V=X +a
(gzarbage)
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The 1inverse paired division/multiplication operation

1s obtained by simply permuting the inputs

o x)[=Xla = (v, y7)

- Y =X +a

X e
(ancilla)

—> V" = x"Xa + sign(x”)|x| mod a
(gzarbage)
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The paired integer multiplication/division operation
and 1ts permuted inverse are exactly bit-reversible
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Bit-reversible fixed-point multiplication is carried

out by approximating the multiplicand as a
rational number

(6, ) [%,+] g = (e, )%= [£X1g = (7,77)




Using paired integer multiplication/division ensures

bit-reversibility for dissipative dynamic systems

Using paired integer multiplication/division:

Strain energy: 0.0000

Kinetic energy: ©0.0000 mass-proportional damping:
Potential energy: 4.8010

Total energy: 4.8010 C — CZM

Vp < Up_y, + a(u,)At/2
* : 1 1-aAt/2
(v‘ru vn+1) < (vn; Un)[X)T] 1+alt/2

Un+1 € Un T UntsAt

Ancilla velocity state variables: Uy,
I I Addition/subtraction: reversible

Paired multiplication/division: reversible
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Using paired integer multiplication/division ensures

bit-reversibility for dissipative dynamic systems

 Fixed-point arithmetic

unpaired integer
multiplication/division
(not reversible)

386k degrees of freedom

1000 time steps

Fixed-point arithmetic

paired integer
multiplication/division
(reversible)



Forward solution accuracy, memory, and run-time

performance using paired fixed-point arithmetic 1s
comparable to that of floating-point arithmetic

Floating-point
1x{64-bit float (double)}

Run-time: 47.3 s

: i Fixed-point (reversible)
2X132-bit int}

Run-time: 50.2 s

386k degrees of freedom 1000 time steps



The concept of bit-reversible scalar
multiplication/division can be generalized to achieve
bit-reversible matrix multiplication/inversion

Uzn

Lyy Ly -+ 1. i Dnn . i 1

Vi =9+ XjciLi7; | € (3, 97) = (fi;ff)[x:+];i @2 =x+ X5 Uijx

y=1Ly y = DX x=Ux

y = Ax .



The concept of bit-reversible scalar
multiplication/division can be generalized to achieve
bit-reversible matrix multiplication/inversion

Uzn

Lyy Ly -+ 1. i Dnn . i 1

Vi=Yi—2j<i Lij¥; - (X, %7) = ()A’i»y;)[+»x]d_i » X =X = Njsi Uijx;

y=L1y Xx=D"1y x=U"1%
X
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The proposed set of bit-reversible operations can be

used to 1implement reversible time-integrators for
common visco-elastic/plastic constitutive models

Bingham-Maxwell Model:

£° n ep Forward:
H | If |E(€ — Ep)l > O-YO
| (P, eP") « (£7,eP7)[X,+]4
g <= n %*U PP +el(1=1)
E B Backward:
. Oy If |E(€ — Ep)l > Ovyo
o =Le P el =el(1 =)

o — 1P| < oy, (P, eP*) « (P, eP)[+,X]A
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Demonstration: implementation of a reversible

uniaxial visco-plasticity model with a maximum
plastic strain-based failure criterion

<

Floating-point (not reversible)

<

Fixed-point (reversible)

i

£

s
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Ongoing and future work

» Limitations:
* Overflow!
* Not all models are amenable to a reversible implementation
* Must ensure consistent execution during forward/backward passes

» Alternative bit-roundoff data compression methods

* Inelastic material behavior
* Continuum damage/plasticity/visco-elasticity, fracture, friction

* Compare performance on GPUs
* Does the proposed approach help with minimizing device I/0O and latency?

» Application to optimization/inverse problems

* Optimal design of impact-resistant structures
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Questions?




